

Third International Planetary Probe Workshop

Huygens entry heat flux prediction

L. Walpot,* L.Caillault,**
C.O.Laux,** R.Molina,†
T.Blancquaert†

^{*}AOES B.V., Haagse Schouwweg 6G, 2332 KG Leiden, The Netherlands

^{**}Laboratoire EM2C, Ecole Centrale Paris, CNRS-UPR288, Grande Voie des Vignes, 92290 Châtenay-Malabry, France

[†]ESA-ESTEC, Noordwijk, The Netherlands

Huygens entry heat flux prediction

•Prior to probe release, heat flux assessment, triggered Aero Convergence Working Group (ACWG):

EADS/EM2C/ESTEC/NASA Ames/Langley analysis focused mainly on max heat flux/heat load w.r.t.

•entry angle and atmosphere composition variation based on well consolidated/validated models)

- •Contribution of AOES/EM2C is presented:
 - •Flow field analysis (AOES) + convective heating
 - •Experimentally code validated Boltzmann radiation (EM2C)

Titan atmospheric density profiles

Summary trajectory consolidation cases

A) TPS max heat flux sizing case: Yelle min, FPA=-68º

- Yelle min [95%N2, 5%CH4, 0%Ar] Gravity Wave 110
- Yelle min [95%N2, 5%CH4, 0%Ar] No Gravity Wave

CH4 concentration sensitivity

to envelope TPS heat flux sizing case

- Yelle min(A) [97%N2, 3%CH4, 0%Ar] No Gravity Wave
- Yelle min(B) [99%N2, 1%CH4, 0%Ar] No Gravity Wave

Summary of heat flux consolidation cases

ases

B) TPS heat load sizing case: Yelle max FPA=-62º

- Yelle max [89%N2, 1%CH4, 10%Ar] Gravity Wave phase 240 deg.
- Yelle max [89%N2, 1%CH4, 10%Ar] No Gravity Wave

Argon concentration sensitivity

- Yelle max(A) [92%N2, 1%CH4, 7%Ar] No Gravity Wave
- Yelle max(B) [97%N2, 1%CH4, 2%Ar] No Gravity Wave

Summary of heat flux consolidation cases

C) Yelle nominal case: FPA=-650:

verification of the TPS design adequacy

- Yelle nom [95%N2, 3%CH4, 2%Ar] No GW
 Nominal Entry CH4/N2 concentration sensitivity
- Yelle nom(A) [96%N2, 2%CH4, 2%Ar] No GW

D) Post Ta atmosphere (26 oct 2004), FPA=-650 :

- Post Ta [97.7%N2, 2.3%CH4, 0%Ar] No GW
- Post Ta (A)[97.7%N2, 1.8%CH4, 0%Ar] No GW
- Post Ta (B)[97.7%N2, 3.3%CH4, 0%Ar] No GW

Associated trajectories and FPA at EI

HUYGENS

Convective heat flux analysis

CFD Navier-Stokes solver: LORE

- 1. Thermo-chemical nonequibrium: 2-temperature model
- 2. Finite volume modified AUSM/multi-block
- 3. Nelson(1991)/Gokcen(2004) reaction model
- 4. Diffusion model fixed Lewis/collision integrals
- 5. Special attention towards grid convergence

Convective heat flux analysis

CENTRE NATIONAL
DE LA RECHERCHI
SCIENTIFICUE

Chem reaction set influence on stagnation line (Nelson/Gokcen w/o ionization)

Diffusion modeling sensitivity

Radiative heating assessment with SPECAIR

- SPECAIR: line-by-line radiation code (Laux, VKI lecture series, 2002 and "Optical Diagnostics and Radiative Emission of Air Plasmas," Ph.D. Thesis, Stanford University, 1993)
- All SPECAIR simulations are obtained with:
 - Boltzmann distributions at T_{elec}=T_{vib} and T=T_{rot}
 - Spectral resolution: 400 points/nm
 - Self-absorption
 - Spin-splitting
 - 1D tangent slab approximation

Transitions considered in SPECAIR for Huygens Simulations

CN: Violet and Red

• N₂: 1st and 2nd positive

• NH: A-X

• C₂: Swan

Atomic lines of N and C

Contributions of individual species to radiative heating (Post Ta(B) [97.2-1.8-0] -65 NoGW)

Validation of CN Violet in Relative Intensity: SPECAIR / LIFBASE*

CN violet, T=Trot=7000 K, Tvib=Telec=4000 K, P=1atm

*J. Luque and D.R. Crosley, "LIFBASE: Database and spectral simulation, SRI International Report MP 99-009 (1999)

Comparison of SPECAIR with LTE spectrum measured in Stanford's 50 kW Plasma Torch Facility (air with 330 ppm CO2) (Laux, VKI Lecture Series 2002)

Emitting regions in the shock layer

Post Ta [97.8-2.2-0] -65 NoGW

Effect of absorption and of spin-splitting

Effect of absorption

Effect of spin-splitting

Post Ta(B) [97.2-1.8-0] -65 NoGW

radiative relief: coupling: Tauber/Wakefield + N2 quenching

Nelson(1991)/Gocken(2004) reaction rates Yelle nominal FPA=-650

Gravity wave sensitivity: Yelle min FPA=-68 Yelle max FPA=-620

CH4/N2 sensitivity: Yelle minimal FPA=-680

Ar/N2 sensitivity: Yelle max: FPA=-62⁰

Post TA: FPA=-65⁰ convective heat flux along wall

HUYGENS

Post TA: FPA=-65⁰ convective heat flux along wall

Post TA: FPA=-65⁰ influence CH4/N2

HUYGENS

Conclusions:

- Flight Path Angle at Entry Interface variation in the range [-68,-62]: small
- 2. Gravity Wave perturbation sensitivity: small
- Sensitivity to CH4: large, Ar concentration: small
- 4. Transport properties modeling important for accounting for diffusion of H atoms in the boundary layer. (25% stag, increase for qconv)
- 5. Spectral resolution, spin-splitting effect on radiative heating
- Sensitivity to chemical kinetics modeling (Gokcen/Nelson)
- 7. Heat load Relief: radiation coupling modeling 25%, possible N2 quenching (5%)

Remark: ablative AQ60 heat shield injected materials not included in analysis but expected beneficial (potential radiation absorption/shielding effects)
HUYGENS
June 27